How?

- Anodes and Cathodes
- Anode loses Metal
- Cathode reacts with oxygen and water
- Electrons in the metal
- Ions in the Electrolyte
Why?

How?

Steel in Concrete

Cathodic Protection

Documents

Hydrogen Embrittlement

Summary

How?

Salt Solution

ZINC

COPPER
Steel in Concrete

• Passive Film Protects

• But….
 – Chlorides
 – Carbonation

• Steel Rusts
 – Lose reinforcement

• Rust is bigger than steel

• Bits fall off
Steel in Concrete - Carbonation

Why?

How?

Steel in Concrete

Cathodic Protection

Documents

Hydrogen Embrittlement

Summary
Steel in Concrete - Chlorides

Why?

How?

Steel in Concrete

Cathodic Protection

Documents

Hydrogen Embrittlement

Summary
Steel in Concrete - Chlorides

Why?

How?

Steel in Concrete

Cathodic Protection

Documents

Hydrogen Embrittlemet

Summary

Repaired CATHODE

SALTY and ANODIC

CATHODES

ANODES
Cathodic Protection

<table>
<thead>
<tr>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using CP stops rust in any environment</td>
</tr>
<tr>
<td>Chloride contaminated concrete can remain</td>
</tr>
<tr>
<td>Saves</td>
</tr>
<tr>
<td>- Propping</td>
</tr>
<tr>
<td>- Access</td>
</tr>
<tr>
<td>- Materials</td>
</tr>
<tr>
<td>- Carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathodic Protection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steel in Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents</td>
</tr>
<tr>
<td>Hydrogen Embrittlement</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>

Documents

- Propping
- Access
- Materials
- Carbon

Impressed Current or Galvanic
Cathodic Protection

\[
\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^- \quad \text{(aq.)}
\]
Documents

- BS EN 12696 2000 - CP of concrete
 - Includes criteria
- BS EN 15257 2006 – Certification of CP people
- BA 83 – Highways Agency Advice Note
- TR 36 & 37 – Concrete Society Guidance (Being revised, numbers to change)
Documents

Why?

How?

Steel in Concrete

Cathodic Protection

Documents

Hydrogen Embrittlement

Summary

• BS EN 12696:
 – -720mV vs Silver / Silver Chloride / 0.5M Potassium Chloride
 • Or
 – 100mV Decay in 24 hours
 • Or
 – 150mV decay over longer periods
• AND
• No potentials more negative than -900mV for prestressed concrete
Hydrogen Embrittlement

Why?

How?

Steel in Concrete

Cathodic Protection

Documents

Hydrogen Embrittlement

Summary

- If steel is >600MPa UTS
- AND
 - Is under high stress
- AND
 - Is susceptible to it
- AND
 - Hydrogen is being generated
- Risk of hydrogen embrittlement
Hydrogen Embrittlement

- Most cases are self corrosion in very high strength steels
- Simple to avoid in most reinforced concrete
- Don’t turn the system up that high
- We rarely achieve the -720mV
- All the systems I have designed, commissioned or monitored have never come close to -900mV
Summary

• Steel rusts
• For chloride induced corrosion CP saves
 – Carbon Dioxide
 – Repairs
 – Access
 – Propping
• Codes are available
 – Competence of personnel
 – Safe Operation of Systems
• Any Questions???